Rutgers University: Algebra Written Qualifying Exam January 2008: Day 1 Problem 1 Solution

Exercise. Prove that there are no simple groups of order 12.

Solution.

Let G be a group of order 12 . We want to show that there is a normal subgroup of G that is not $\{e\}$ or G.

$$
12=2^{2} \cdot 3
$$

By the third Sylow theorem,

$$
\begin{aligned}
& n_{3} \equiv 1 \bmod 3 \quad \text { and } \quad n_{3} \mid 4 \quad \Longrightarrow \quad n_{3}=1 \text { or } 4 \\
& n_{2} \equiv 1 \bmod 2 \quad \text { and } \quad n_{2} \mid 3 \quad \Longrightarrow \quad n_{2}=1 \text { or } 3
\end{aligned}
$$

If there is only $n_{3}=1$ Sylow 3 -subgroups, then the Sylow 3 subgroup is normal in G by the second Sylow theorem.
$\Longrightarrow G$ is not simple

Otherwise, $n_{3}=4$, and G has $4(3-1)=8$ elements of order 3 .
There are $12-8=4$ remaining elements in G
This is a single Sylow 2-subgroup
\Longrightarrow there must be only one Sylow 2-subgroup
\Longrightarrow the Sylow 2 subgroup is normal in G by the second Sylow theorem
$\Longrightarrow G$ is not simple
Thus, there are no simple groups of order 12.

